
Planets Diameter (km) Distance to Sun (km)

Sun 1,392,000

Mercury 4,878 57.9 106

Venus 12,180 108.3 106

Earth 12,756 149.7 106

Marte 6,760 228.1 106

Jupiter 142,800 778.7 106

Saturn 120,000 1,430.1 106

Uranus 50,000 2,876.5 106

Neptune 49,000 4,506.6 106

Table 1: Data of the Solar System bodies.
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Planets and exoplanets
Rosa M. Ros
International Astronomical Union, Technical University of Catalonia (Barcelona, Spain)

Summary
�is workshop provides a series of activities to compare 
the many observed properties (such as size, distances, 
orbital speeds and escape velocities) of the planets in 
our Solar System. Each section provides context to 
various planetary data tables by providing demonstra-
tions or calculations to contrast the properties of the 
planets, giving the students a concrete sense for what 
the data mean. As a final activity, some properties of 
extrasolar planetary systems are explored and com-
pared to the Solar system. At present, several methods 
are used to find exoplanets, more or less indirectly. It 
has been possible to detect almost 100 multiple plan-
etary systems. A famous example is shown in figure 1.

Goals

Sytem summary data table mean. 

Galilean satellites of Jupiter using a set of photograph-
ic observations.

planetary systems by comparing their properties to the 
orbital system of Jupiter and its Galilean satellites.

Solar System and date tables 
By creating scale models of the solar system, the stu-
dents will compare the different planetary parameters. 
To perform these activities, we will use the data in Ta-
ble 1.

In all cases, the main goal of the model is to make the 
data understandable. Millions of kilometers are not 

Fig. 1: The first planet directly observed  2M1207b. It 
has a mass 3.3 times the mass of Jupiter and orbits 
at 41 AU from the brown dwarf. In 2006, a disk of 
dust was found around the parent star, providing 
evidence that planet formation may proceed in a 
way similar to that observed around more massive 
solar-type stars. (Photo: ESO). 

distances that are easily grasped.  However, if trans-
lated to scaled distances and sizes, the students usually 
find them easier to comprehend.

Model of the Solar System
Models of diameters
Using a large piece (or multiple pieces if necessary) of 
yellow paper cut a circle representing the Sun. �e Sun 
is scaled to be 139 cm in diameter such that 1 cm is 10 
000 km. Cut the different planets out of plain card-
board or construction paper and draw their morpho-
logical characteristics. By placing the planets near the 
solar disk, students can grasp the different planetary 
scales.

With a scale of 1 cm per 10 000 km, use the following 
planetary diameters:

Sun 139 cm, Mercury 0.5 cm, Venus 1.2 cm, Earth 
1.3 cm, Mars 0.7 cm, Jupiter 14.3 cm, Saturn 12.0 cm, 
Uranus 5.0 cm and Neptune 4.9 cm.

Suggestion: It is also possible to complete the previous 
model by painting the planets on a shirt, keeping the 
scale of the planets but only painting a fraction of the 
Sun.

Model of distances
By comparing the distances between the planets and 
the Sun we can produce another model that is easy to 
set up in any school hallway. First, simply cut strips 
of cardboard 10cm wide, linking them up to obtain a 
long strip of several meters (figure 3). �en, place the 



Fig. 2a and 2b: xamples of shirts providing Solar 
and planetary diameter scale comparisons.

Fig. 4: The Sun and the planets of the model of 
diameters and distances.

Fig. 3: Model of distances.
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cutouts of the planets on it at their correct distances. 
Remind the students that the distance between the 
planets are not to scale with diameters. At the sug-
gested scale, the planets would be one thousand times 
smaller as here we are using 1 cm per 10 000 000 km, 
while in the first activity above we used 1 cm per 10 
000 km. If using a scale of 1cm per 10 million km the 
scaled distances are: Mercury 6 cm, Venus 11 cm, the 
Earth 15 cm, Mars 23 cm, Jupiter 78 cm, Saturn 143 
cm, Uranus 288 cm and Neptune 450 cm.

Suggestion: A fun variation of this model is to use 
a toilet paper roll each sheet for scale. For example, 
you can take as scale a portion of paper for every 20 
million km.

Model of diameters and distances
!e next challenge is to combine the two above activi-
ties and make a model representing the bodies to scale, 
as well as the corresponding distances between them. 
It is not actually that easy to define a scale that allows 
us to represent the planets with objects that are not 
too small and still have distances that are not overly 
large, in which case the sizes and distances are not eas-
ily assimilated, and the model is not very useful for 
students.  As a suggestion, it may be a good idea to use 
the schoolyard to make the model and use balls for the 
planets as balls of varying diameters are available as 

appropriate.

As an example, we provide a possible solution. At one 
end of the schoolyard we put a basketball about 25 cm 
in diameter that represents the Sun. Mercury will be 
the head of a needle (1 mm in diameter) located 10 m 
from the Sun. !e head of a slightly larger needle (2 
mm in diameter) will represent Venus at 19 m from 
the Sun, while Earth will be the head of another nee-
dle similar to the previous one (2 mm) at 27 m from 
the Sun. Mars is a slightly smaller needle head (1mm), 
located 41 m from the Sun. Usually, the schoolyard 
ends here, if not sooner. We will have to put the fol-
lowing planets in other places outside the schoolyard, 
but at landmarks near the school, so that the students 
are familiar with the distances. A ping-pong ball (2.5 
cm diameter) corresponds to Jupiter at 140 m from the 
Sun. Another ping-pong ball (2 cm in diameter) will 
be Saturn at 250 m from the Sun, a glass marble (1 cm 
in diameter ) will represent Uranus at 500 m from the 
Sun, and a final marble (1 cm), located at 800 m, will 
represent Neptune.

It should be emphasized that this planetary system 
does not fit into any school. However, if we had re-
duced the distances, the planets would be smaller than 
the head of a needle and would be almost impossible 
to visualize. As a final task, you can calculate what 
scale has been used to develop this model.

Model on a city map
!e idea is simple - using a map of the city to locate 
the positions of the different planets, assuming the 
Sun is located at the entrance to the school. As an ex-
ample, we present the map of Barcelona with different 
objects (specifically fruits and vegetables) that would 
be located on the different streets, so you can better 
imagine their size. As an exercise, we suggest that you 
do the same activity with your own city.



Fig. 6a and 6b: Snapshots of the city of Metz.

Fig. 7: Another example.
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Using the map shown here, Mercury would be a grain 
of caviar, Venus and the Earth a couple of peas, Mars 
a peppercorn, Jupiter an orange, Saturn a tangerine 
and Uranus and Neptune a pair of walnuts.  For the 
Sun, since there is no vegetable large enough, students 
should imagine a sphere roughly the size of a dish-
washer. �e instructor can do the same activity using 
their own city.

In the city of Metz (France) there is a solar system 
spread out on its streets and squares, with correspond-
ing planets accompanied by information panels for 
those walking by.

Models of light distances
In astronomy it is common to use the light year as 
a unit of measurement, which can often be confused 
as a measurement of time. �is concept can be illus-
trated using a model of the Solar System. Since the 
speed of light is c = 300,000 km/s., the distance that 
corresponds to 1 second is 300,000 km. For exam-
ple, to travel from the Moon to the Earth, which are 
separated by a distance of 384,000 km, it takes light 
384,000/300,000 = 1.3 seconds.

384,000
300,000

Fig. 5: Map of the “Ensanche de Barcelona” with 
some planets. Using these units, we will instruct the students to cal-

culate the time required for sunlight to reach each of 
the planets of the Solar System. (For the instructor, 
here are the times required: the time it takes sunlight 
to reach Mercury is 3.3 minutes, to Venus it takes 6.0 
minutes, to Earth 8.3 minutes, to Mars 12.7 minutes, 
to Jupiter 43.2 minutes, to Saturn 1.32 hours, to Ura-
nus 2.66 hours and to Neptune, 4.16 hours.

You may want to ask the students to imagine what 
a video conference between the Sun and any of the 
planets would be like.

Model of the apparent size of the solar disk from 
each planet
From a planet, for example the Earth, the Sun sub-
tends an angle α (figure 8). For very small values of α, 
we take tan α  =  α (in radians)

Knowing that the solar diameter is 1.4 106 km, ie a 
radius of 0.7 106 km, and that the Earth-Sun distance 
is 150 106   km, we deduce:

0.7·106

150·106

And in degrees:
0.0045 180

π

�at is, from the Earth, the Sun has a size of 2 x 
0.255º=0.51°, i.e., about half a degree. Repeating the 
same process for each planet, we get the results in the 
following table 2 and we can represent their relative 
sizes (figure 9).

Fig. 8: From the Earth, the Sun subtends an angle α.

= 1.3 seconds

α= tan α =              = 0.0045 radians

= 0.255º

Earth Sun



Planets tan α α (º) α (º)aprox

Mercury 0.024 1.383 1.4

Venus 0.0129 0.743 0.7

Mars 0.006 0.352 0.4

Jupiter 0.0018 0.1031 0.1

Saturn 0.000979 0.057 0.06

Uranus 0.00048 0.02786 0.03

Neptune 0.0003 0.0178 0.02

Table 2: Results for the different planets.

Fig. 10: Model of densities.

Minerals Density Other materials Density

Plaster 2.3 Glycerin 1.3

Orthoclase 2.6 Cork 0.24

Sulfur 1.1-2.2 Aluminium 2.7

Alite 2 Iron 7.86

quartz 2.65 Cement 2.7 - 3.1

Borax 1.7 Glass 2.4 - 2.8

Blende 4 Tin 7.3

Pyrite 5.2 Clay 1.8 - 2.5

Erythro-
cytes

5.4 Bakelite 1.25

Calcite 2.7 Oak 0.90

Galena 7.5 Pinewood 0.55

Table 4: Examples of densities of some materials
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Model of densities
�e objective of this model is to look for samples of 
materials that are easily manipulated and have a den-
sity similar to each of the solar system bodies, in order 
to be able to “feel it in our hands.”

From Table 3 of planetary densities, simply compare 
with the densities of various minerals (in every school 
there is usually a collection of materials) or with sam-
ples of other materials that are easy to find such as 
glass, ceramics, wood, plastics, etc.. �e following Ta-
ble 4 presents some examples of materials and their 
densities.

When using materials not included in Table 4, it is 
very easy to calculate its density. Simply take a portion 
of this material, weigh it to find its mass, m, and put it 
in a container of water to measure its volume, V. �e 

Fig. 9: The Sun seen from each planet: Mercury, 
Venus, The Earth, Mars, Jupiter, Saturn, Uranus and 
Neptune.

Table 3: Densities of the bodies in the Solar System.

Planets Density (g/cm3)

Sun 1.41

Mercury 5.41

Venus 5.25

Earth 5.52

Moon 3.33

Mars 3.9

Jupiter 1.33

Saturn 0.71

Uranus 1.3

Neptune 1.7

density d of the material will be,

m
V

Students should notice that Saturn would “float” in 
water, because its density is less than 1.

Flattening model of planets
To visualize the deformation (flattening) of gas planets 
due to the centrifugal force generated by their rota-
tion, we will build a simple model.

As we can see in figure 9, with a stick and some card-
board strips, we can build this simple model that re-
produces the flattening of Solar System planets due to 
rotation.

1. Cut some cardboard strips 35 per 1 cm in size.
2. Attach both ends of the strips of cardboard to a 50 
cm-long cylindrical stick.  Attach the top ends to the 
stick so that they cannot move, but allow the bottom 
ends to move freely along the stick.
3. 3. Make the stick turn by placing it between two 

d = 



Fig. 11: Model to simulate flattening due to rotation.

Planet Orbital average 
speed (km/s)

Distance from the 
Sun (km)

Mercury 47.87 57.9 106

Venus 35.02 108.3 106

Earth 29.50 149.7 106

Mars 24.13 228.1 106

Jupiter 13.07 778.7 106

Saturn 9.67 1,430.1 106

Uranus 6.84 2,876.5 106

Neptune 5.48 4,506.6 106

Table 5: Orbital data of the Solar System bodies.

Fig. 12a, 12b and 12c: Simulating the circular move-
ment of planets.
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hands, then rotating it quickly in one direction and 
then the other. You will see how the centrifugal force 
deforms the cardboard bands (figure 11) in the same 
way it acts on the planets.

Model about planetary orbital speeds
It is well known that not all planets orbit the sun with 
the same speed (table 5).

!e fastest is Mercury, the closest, and the slowest is 
Neptune, the farthest. Romans had already noticed 
that Mercury was the fastest of all and so it was identi-
fied as the messenger of the gods and represented with 
winged feet. Even if observing with the naked eye, it 
is possible to tell that Jupiter and Saturn move much 
more slowly across the zodiacal constellations than do 
Venus and Mars, for example.

From Kepler’s third law P2/a3 = K, it is deduced that the 
orbital speed decreases when the distance increases.

To view this relationship, there is also a simple way to 
experience this relationship. We begin by tying a heavy 
object, such as a nut, onto a piece of string. Holding 
the string from the end opposite the heavy object, we 
spin the object in a circular motion above our heads. 
We can then see that if we release string as we spin it 
(making the string longer), the object will lose speed. 
Conversely, if we take in string (making it shorter), it 
will gain speed. In fact, this (e.g.  Kepler’s third law) 
is a consequence of the conservation of angular mo-
mentum.

We can then develop a solar system model with nuts 
and bits of string proportional in length to the radii 
of the planetary orbits (assuming, again, that they all 
travel in circular orbits).  However, instead of cutting a 
separate piece for each planet, cut all pieces to a length 
of about 20 cm. !en, using the appropriate scaling, 
measure the correct distance from the heavy object 
and make a knot at this point. !en, the string can 
be held at the location of the knot while spinning the 
heavy object. 



Planet R equatorial 
radius (km)

g surface 
gravity

ρ density

Mercury 2,439 0.378 5.4

Venus 6,052 0.894 5.3

Earth 6,378 1.000 5.5

Mars 3,397 0.379 3.9

Jupiter 71,492 2.540 1.3

Saturn 60,268 1.070 0.7

Uranus 25,559 0.800 1.2

Neptune 25,269 1.200 1.7

Table 6: Surface gravity and densities of the Solar 
System bodies.

Planet Gravity (m·s-2) Gravity (T=1)

Moon 1.62 0.16

Mercury 3.70 0.37

Venus 8.87 0.86

Earth 9.80 1.00

Mars 3.71 0.38

Jupiter 23.12 2.36

Saturn 8.96 0.91

Uranus 8.69 0.88

Neptune 11.00 1,12

Table 7: Surface gravities for each Solar System 
body.

Fig. 13a: Surface gravities for each Solar System 
body.

Fig. 14: Solar System model with bathroom scales.
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To use the model we must hold one of the strings at 
the location of the knot and turn it over our heads in a 
plane parallel to the ground with the minimum speed 
possible speed that will keep it in orbit. We will see 
that this velocity is greater in cases where the radius 
is smaller.

Model of surface gravities
!e formula for gravitational force,

M · m
d2

allows us to calculate the surface gravity that acts on 
the surface of any planet. Considering a unit mass (m 
= 1) on the planet’s surface (d = R), we obtain

G · M
R2

If we then substitute M = 4/3 πR3 ρ, for the planet 
mass, we find:

g =    π · G · ρ · R

where  G = 6.67 10-11 is the universal gravitational con-
stant, ρ is the density and R is the radius of the planet. 
Substituting these last two for the values listed in Ta-
ble 1, we can calculate the value of the surface gravity, 
g, for all planets.

Let’s see a couple of examples: 

g
mercury

 =    π G 5.4 2439 = 3.7

g
venus

 =     π G 5.3 6052 = 8.9

Similarly, we can calculate g for the rest of the planets. 
(Results are Mars: 3.7, Jupiter: 24.9, Saturn: 10.5, Ura-
nus: 7.8 and Neptune: 11.8).

Model of bathroom scales
In this case, the goal of the model is to develop a set 

of 9 bathroom scales (8 planets and the Moon) so that 
students can simulate weighing themselves on each of 
the planets and the moon.

Since the process is the same for each planet, we will 
only describe one of them. !e idea, essentially, is to 
open up a bathroom scale and replace the disk labeled 
with weights with another with weights calibrated for 
a particular planet.

1. First, we open the scale. In most scales, there are two 
springs that secure the base. Remember that we have 
to put it back together again (figures 13a and 13b).

2. Once open, the weight disk should be removed, ei-
ther to be replaced, or drawn over with the appropriate 
planetary weights.
3. In the following table we have surface gravities of 
the moon and various planets of the Solar System. In 

F = G ·

g =

4
3

4
3
4
3



Fig. 15a: Simulating craters.
Fig. 15b: Resulting craters.

Planet R equatorial
radius (km)

g reduced surface 
gravity

Mercury 2,439 0.378

Venus 6,052 0.894

Earth 6,378 1.000

Mars 3,397 0.379

Jupiter 71,492 2.540

Saturn 60,268 1.070

Uranus 25,559 0.800

Neptune 25,269 1.200

Table 8: Radius and surface gravities of Solar Sys-
tem bodies.
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one column, they are listed in absolute values (m s-2), 
and in the other in relative values with respect to ter-
restrial gravity. �ese values are the ones we will use 
to convert units of “terrestrial” weight to proportional 
units of weight on other planets.

4. Finally, we close the scale again, and can now see 
what we would weigh on one of the planets.

Models of craters
Most craters in the solar system are not volcanic but 
are the result falling meteoroids  onto the surfaces of 
planets and satellites.
 

1. First, cover the floor with old newspapers, so that it 
doesn’t get dirty.

2. Put a 2-3 cm layer of flour in a tray, distribut-
ing it with a strainer/sifter so that the surface is very 
smooth.

3. Put a layer of a few millimeters of cocoa powder 
above the flour with the help of a strainer/sifter (figure 
15a).

4. From a height of about 2 meters, drop a projectile: 
a tablespoon of cocoa powder. �e fall leaves marks 
similar to those of impact craters (figure 15b).

5. You may want to experiment with varying the height, 
type, shape, mass, etc. of the projectiles. In some cases, 

you can get even get a crater with a central peak.

Model of escape velocities
If the launch speed of a rocket is not very large, the 
gravitational force of the planet itself makes the rocket 
fall back on its surface. If the launch speed is large 
enough, the rocket escapes from the planet’s gravita-
tional field. Let’s calculate the speed above which a 
rocket can escape, ie the minimum launch speed or 
escape velocity.

Considering the formulas of uniformly accelerated 
motion, 

e = ½ at2  +  v
0
 t  

 v  = at  +  v
0

if we replace the acceleration by g and we consider the 
initial velocity v

0
 to be zero, we find that on the plan-

et’s surface, R  = ½ gt2 and, moreover, v  =  gt. After 
removing the time variable, we find,

v =  2gR

where we can replace the values g and R by the values 
that are listed in the next table to calculate the escape 
velocity for each planet.

As an example, we calculate the escape velocities of 
some planets. For example:

For the Earth, v
earth

 =  2·g·R = (2 9.81 6378)1/2 km/s.

For the smallest planet, Mercury,
v

mercury
 = (2 9.81 0.378 2439)1/2 = 4.2 km/s

And for the greatest planet, Jupiter,
v

jupiter
  = (2 9.81 0.378 2439)1/2 = 60.9 km/s

It is clear that it is easier to launch a rocket from Mer-
cury than from the Earth, but it is most difficult to 
launch a rocket on Jupiter, where the escape velocity is 
about 60 km/s.



Fig. 17: Some rockets.

Fig. 16a, 16b, 16c and 16d: The process in four pic-
tures.
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(To be able to compare the results, the accepted escape 
velocity for each body in the Solar System are the fol-
lowing: Mercury 4.3 km/s, Venus 10.3 km/s, Earth 
11.2 km/s, Mars 5.0 km/s, Jupiter 59.5 km/s, Saturn 
35.6 km/s, Uranus 21.2 km/s, Neptune 23.6 km/s. As 
we can see, our simple calculations give us acceptable 
results.)

Model of a rocket with an effervescent tablet
As an example of a rocket that can be launched safely 
in the classroom, we propose the following rocket, 
which uses an effervescent aspirin tablet as a propel-
lant. We begin by cutting out the rocket model on the 
solid lines, and pasting on the dotted lines like in the 
photo.

We will use a plastic capsule, such as a film canister, 
making sure that the capsule can fit inside the cylinder 
of the rocket. "en, we put the three triangles as sup-
ports on the body of the rocket and finally, add the 
cone on the top of the cylinder (figures 16a, 16b, 16c, 
16d, 17, 18, 19a, 19b, 19c).

Fig. 18: Simplified scheme.

After constructing the rocket, we have to carry out the 
launch. For this, we will put water into the plastic cap-
sule, up to about 1/3 of its height (about 1 cm). Add 
1/4 of an effervescent tablet. Put the tape and the rock-
et above the capsule. After about 1 minute, the rocket 
takes off. Obviously we can repeat as many times as we 
would like (at least 3/4 of the aspirin tablet remains, so 
enjoy launching rockets!).
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Fig. 19a: Body of the rocket. Paste the fins in the dotted zone.
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Fig. 19b: Model for the three fins. Fig.19c: Top cone of the rocket.



Planet name Average distance,  
AU

Orbital period,
days

Minimum mass*, 
Jupiter masses

Discovery 
date, year

Diameter **,
km

Ups And b 0.059 4.617 0.69 1996 ~Júpiter 124 000

Ups And c 0.83 241.52 1.98 1999 ~Júpiter 176 000

Ups And d 2.51 1274.6 3.95 1999 ~Júpiter 221 000

Gl 581 e 0.03 3.149 0.006 2009 Terrestre 16000

Gl 581 b 0.04 5.368 0.049 2005 Terrestre 32 000

Gl 581 c 0.07 12.929 0.016 2007 Terrestre 22 000

Gl 581 g (not confirmed) 0.14 36.562 0.009 2005 Terrestre 18 000

Gl 581 d 0.22 68.8 0.024 2010 Terrestre 25000

Gl 581 f (not confirmed) 0.76 433 0.021 2010 Terrestre 24000

Table 9: Extrasolar systems with multiple planets (three or more). Data from the Extrasolar Planets Catalog2 (except 
the last column). * The radial velocity method only gives the minimum mass of the planet. ** The diameter shown in 
the last column has been calculated asuming that the planets density is equal to the density of Jupiter (1330 kg / m3) 
for gaseous planets. For planets considered to be terrestrial, the diameter was calculated using the density of the Earth 
(5520 kg /m3).

Planet name Average distance, AU Orbital period, 
years

Mass,
Jupiter masses

Diameter,
km

Mercury 0.3871 0.2409 0.0002 4,879

Venus 0.7233 0.6152 0.0026 12,104

Earth 1.0000 1.0000 0.0032 12,756

Mars 1.5237 1.8809 0.0003 6,794

Jupiter 5.2026 11.8631 1 142,984

Saturn 9.5549 29.4714 0.2994 120,536

Uranus 19.2185 84.04 0.0456 51,118

Neptune 30.1104 164.80 0.0541 49,528

Table 10: Solar System planets.
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Models of exoplanetary systems
�e Jet Propulsion Laboratory (NASA; http://plan-
etquest.jpl.nasa.gov/) keeps a catalog of planetary ob-
jects discovered outside our own Solar System. �ere 
are more than 2000 planet candidates and more than 
700 confirmed planets. �ey are called exoplanets 
(short for extrasolar planets; most are similar to or 
more massive than Jupiter, which is the largest planet 
in our Solar System. �is is why we often compare the 
masses of extrasolar planets to the mass of Jupiter (1.9  
1027 kg). Only a few of the exoplanets are similar in 
mass and size  to the Earth, but this is likely due to an 
observational bias since the latest detection techniques 
are better at detecting massive objects.

In this section, we consider some examples of extra-
solar planetary systems which have more than three 
known planets. 

�e nomenclature of exoplanets is simple. A letter is 
placed after the name of the star, beginning with the 
letter  “b” for the first planet found in the system (e.g., 
51 Pegasi b). �e next planet detected in the system is 
labeled with the following letter of the alphabet such 

as, c, d, e, f, etc (e.g. 51 Pegasi c,  51 Pegasi  d, 51 Pegasi 
e, 51 Pegasi f, etc).

Some exoplanets   are very close to their central star, 
for example Gliese 876 with closer orbits that Mercury 
is from the sun. Others have more distant planets (HD 
8799 has a planetary system with three planets about 
as far as Neptune is from the sun.) One possible way to 
display these data is to build scale models of the cho-
sen planetary systems. �is allows us to easily compare 
them with each other and with our Solar System.

Today we know that there are exoplanets around dif-
ferent types of stars. In 1992, radio astronomers an-
nounced the discovery of planets around pulsar PSR 
1257+12. In 1995, the first detection of an exoplan-
et around a G-type star, 51 Pegasi, was announced, 
and since then exoplanets have been detected in orbit 
around: a red dwarf star (Gliese 876 in 1998), a gi-
ant star (Iota Draconis in 2001) , a brown dwarf star 
(2M1207 in 2004), a K-type star (HD40307 in 2008) 
and an A–type star (Fomalhaut in 2008), among oth-
ers.



Fig. 20: Planet Fomalhaut b located in a debris disk, 
in an image of Fomalhaut taken by the Hubble 
Space Telescope (Photo:NASA).
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Determination of the diameter of exoplanets
First, we will calculate the diameter of a couple of exo-
planets included in Table 9.

We can achieve this goal by assuming that we know 
the density of the exoplanet. For our study, we consid-
er that gaseous planets have the density of Jupiter and 
that terrestrial  exoplanets have the same density as the  
planet Earth. By definition, the density of a body of 
mass m is given by : ρ = m/ V
 

The mass m of the exoplanet appears in table 9, 

and the volume V can be obtained considering the 

planet to be a sphere:

4 · π · R3

3

If we substitute this formula in the previous one, 

we can obtain the radius of the exoplanet:

3m
4πρ

We suggest that the reader calculate the diameter of 
Gliese 581d (terrestrial exoplanet) assuming its density 
to be  ρ = 5520 kg/m3 (the density of the Earth). "en 
repeat the calculation for a non-terrestrial exoplanet  
such as the first multiple planetary system that was 
discovered around a main sequence star, Upsilon An-
dromedae. "is system consists of three planets, all of 
them similar to Jupiter: Ups b, c and d. Calculate their 
diameters assuming ρ = 1330 kg/m3 (the density of 
Jupiter) and compare the results with those in table 9.

Using these results and the average distance taken from  
table 9, we can produce a model in the next section.

Determination of the central star mass
Using the values of table 9 and Kepler’s third law, we 
can determine the mass of the central star M. Kepler’s 
third law states that for a planet with period P and an 
orbit of radius a, a3/P2  is a constant. We can show that 
this constant is the mass of  the central star, expressed 

in solar masses.  If we consider the motion of exoplan-
ets around the star in a circular orbit of radius a, we 
can write, according to Newton’s law of gravitation:

v2    G · M · m
a            a2

For circular motion, the speed is 

G · M
a

"e period, for circular motion, is

2 · π · a
v

"en, when we introduce the value of v, we deduce:

4 · π2 · a3

G · M

And, for each exoplanet, using Kepler’s third law,

a3        G · M
 P2     4 · π2

Writing the previous relation for the Earth’s motion 
around the Sun, using P=1 year and a=1 AU, we de-
duce the following equation:

G · M
S

4 π2

Dividing the last two equalities, and taking the Sun’s 
mass as unity, we obtain: 

a3

P2 

where a is the radius of the orbit (in AU), P is the pe-
riod of revolution (in years). "is relation allows us to  
determine the mass of the central star in units of solar 
masses.

Expressing the same relationship in diferent units, we 
can write:

M = 0,0395 · 10-18         M

where a is the radius of the orbit of the exoplanet (in 
km), P is the period of revolution of the exoplanet (in 
days) and M is the mass of the central star (in solar 
masses).

For example, calculate the mass of the stars Ups And 
and Gl 581 in solar masses (the result should be equal 
to 1.03 and 0.03 solar masses respectively).

V = 

R = 3

m ·     =

v2 = 

P= 

P2 =

=

1 = 

= M

a3

P2
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Scale model of an exoplanetary system
First we choose the scale of the model. For distances, 
the appropriate scale is: 1 AU = 1 m. In this case all 
exoplanets  can fit inside a typical classroom,  as well as 
the first five planets in our Solar System. If the activity 
is carried out outside (e.g. in the school yard), we can 
build a complete model. A different scale needs to be 
used for the size of the planets, for example: 10,000 
km = 0.5 cm. In this case, the largest planet (Jupiter) 
in our system will be 7 cm in diameter and the small-
est (Mercury) will be 0.2 cm in size.

Now we can build the Solar System, the Upsilon An-
dromedae, and the Gliese 581 systems using the aver-
age distance values included in Tables 9 and 10, using 
the  previously-calculated diameters. 

In the past few years we have learned that the plan-
etary systems configurations are diverse. Some of the 
exoplanets orbit around their stars much closer than 
any planet in our own Solar System orbits around the 
sun. Other exoplanets are closer to their parent star 
than Mercury is from the Sun. �is means they are 
very hot. Another difference is that many large planets 
are close to their stars. 

�e inner part of the Solar System is populated by the 
small, rocky planets and the first of the gas giant plan-
ets, Jupiter, is at 5.2 AU from the Sun. �ese differ-
ences are believed to be mainly due to an observational 
bias. �e radial velocity method for example  is more 
sensitive when the planets are in smaller orbits and are 
more massive. But we may assume that most exoplan-
ets have much larger orbits. It seems plausible that in 
most exoplanetary systems, there are one or two giant 
planets with orbits similar in size to those of Jupiter 
and Saturn.
 

We now consider the habitability of exoplanets. �e 
habitable zone is the region around a star where a 
planet with sufficient atmospheric pressure can main-
tain liquid water on its surface. �is is a conservative 
definition and it is restricted to life as we know it on 
Earth.  Some planetary scientists have suggested to in-
clude equivalent zones around stars where other sol-
vent compounds such as ammonia and methane could 
exist in stable liquid forms.

Rough calculations indicate that the solar system’s 
habitable zone, where liquid water can exist (i.e. where 
the temperature ranges from 0 º to 100º C), ranges 
from 0.56 to 1.04 AU. �e inner edge of this zone 
lies between the orbits of Mercury and Venus and the 
outer edge is just outside the orbit of Earth. Only two 
planets in the Solar System (Venus and Earth) are in-

side the habitable zone (the blue area in figure 21). As 
we know, only the Earth is inhabited, since Venus is 
too hot (but only because of a strong greenhouse effect 
on the planet). 

It appears that Gliese 581d is an example of a terres-
trial exoplanet within the habitable zone of its parent 
star, and it may be a potential candidate for extrater-
restrial life.

Gliese 581 c, on the other hand, might be within the 
habitable zone of its host star. Its orbit lasts 13 days 
and it is situated 14 times closer to its star than the 
Earth lies from the Sun. Nevertheless, the smaller size 
of the star makes this distance favorable for the planet 
to harbor liquid water and to offer the possibility of 
life. Its radius is 1.5 times that of the Earth and this 
indicates that it is a rocky body. Its temperature ranges 
from 0º C to 40º C, which makes possible the exist-
ence of abundant liquid water. �e problem is that it 
always presents the same face to the star. �is evidence 
could suggest that the planet could be rocky like Earth 
or that it could be covered with oceans. Although, in 
contrast, some studies indicate that this planet is suf-
fering from a significant greenhouse effect, like Ve-
nus. 

Gliese 581 g is the first exoplanet, not yet confirmed, 
to be found within the habitable zone, with enough 
gravity to hold an atmosphere (3 to 4 times the mass 
of  Earth) and the right temperature to shelter liquid 
water (-31º C to -12º C ).

Gliese 581 e is one of the smallest exoplanets ever dis-
covered to date. Its mass is 1.7 the mass of the Earth, 
which makes it the smallest planet discovered and the 
closest in size to the planet Earth, although it has an 
orbit very close to its parent star at 0.03 AU. �is fact 

Fig. 21: The habitable zone. Comparison between 
the Solar System and the system of exoplanets in 
Gliese 581. The blue region indicates the zone where 
life as we konw it could exist.
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makes it difficult to hold an atmosphere and puts it 
out of the habitable zone as the proximity of its parent 
star means that the temperatures are above 100 º C. 
At these temperatures, water is not in the liquid phase 
and life as we know it is not possible. 

�ere are still many unanswered questions about the 
properties of exoplanets and there is much more to 
learn about their properties and characteristics.
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